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Crossed-FORT

Table 1
Parameter Crossed-FORT MT
Uo[rrK] ~1.0 ~1.2
w,[2p " Hz] ~ 230 ~155
, ~ 244 ~155
w,[2p " Hz]
w,[2p ~ Hz] ~21 ~15
~106 ~71
W = (VVXWyWZ )1/3
[20 " HZ]
~11 ~10
ww, )"
e = -
]/ w

z

Table 1 crossed-FORT MT
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